Mutual Information and k-Nearest Neighbors Approximator for Time Series Prediction
نویسندگان
چکیده
This paper presents a method that combines Mutual Information and k-Nearest Neighbors approximator for time series prediction. Mutual Information is used for input selection. K-Nearest Neighbors approximator is used to improve the input selection and to provide a simple but accurate prediction method. Due to its simplicity the method is repeated to build a large number of models that are used for long-term prediction of time series. The Santa Fe A time series is used as an example.
منابع مشابه
Tabu Search with Delta Test for Time Series Prediction using OP-KNN
This paper presents a working combination of input selection strategy and a fast approximator for time series prediction. The input selection is performed using Tabu Search with the Delta Test. The approximation methodology is called Optimally-Pruned k -Nearest Neighbors (OP-KNN), which has been recently developed for fast and accurate regression and classification tasks. In this paper we demon...
متن کاملMethodology for long-term prediction of time series
In this paper, a global methodology for the long-term prediction of time series is proposed. This methodology combines direct prediction strategy and sophisticated input selection criteria: k-nearest neighbors approximation method (k-NN), mutual information (MI) and nonparametric noise estimation (NNE). A global input selection strategy that combines forward selection, backward elimination (or ...
متن کاملInput and Structure Selection for k-NN Approximator
This paper presents k-NN as an approximator for time series prediction problems. The main advantage of this approximator is its simplicity. Despite the simplicity, k-NN can be used to perform input selection for nonlinear models and it also provides accurate approximations. Three model structure selection methods are presented: Leave-one-out, Bootstrap and Bootstrap 632. We will show that both ...
متن کاملChaotic Analysis and Prediction of River Flows
Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...
متن کاملA Novel Fuzzy Based Method for Heart Rate Variability Prediction
Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...
متن کامل